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[1] Cross-spectrum analysis based on linear correlations in
the time domain suggested a coupling between large river
flows and the El Niño-Southern Oscillation (ENSO) cycle.
A nonlinear measure based on mutual information (MI)
reveals extrabasinal connections between ENSO and river
flows in the tropics and subtropics, that are 20–70% higher
than those suggested so far by linear correlations. The
enhanced dependence observed for the Nile, Amazon,
Congo, Paraná, and Ganges rivers, which affect large,
densely populated regions of the world, has significant
impacts on inter-annual river flow predictabilities and,
hence, on water resources and agricultural planning.
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1. Introduction

[2] ENSO events impact regional precipitation in the
tropics and subtropics, ultimately causing inter-annual var-
iability in river flows. The ocean-atmosphere-land interac-
tions are complex and far from being completely understood
and accurately modeled. A slight disturbance in these
interactions would usually result in sometimes surprising
distant correlations and climate patterns. Analyses of the
rainfall anomalies during the warm (El Niño) and cold
(La Niña) episodes of ENSO suggest the existence of
nonlinear sea surface temperature (SST)-rainfall relation-
ships in the tropics and a strong influence of SST forcing on
equatorial rainfall in the geographic vicinity of that forcing
[Hoerling et al., 1997]. To properly explain and ultimately
predict this variability, it is important to disentangle, as far
as possible, long range climatic phenomena from recent
effects such as those possibly produced by deforestation and
global warming.
[3] While the relationships among many climate and

hydrological variables are decidedly nonlinear [Jin et al.,
2005], linear dependence measures are still being used as a
matter of course to relate ENSO and inter-annual variability

in river flows. These measures have ranged from linear
correlation coefficients (CC) in the time domain [Eltahir,
1996; Amarasekera et al., 1997;Whitaker et al., 2001; Anctil
and Coulibaly, 2004] to the cross-spectrum analysis [Richey
et al., 1989;Wang and Eltahir, 1999]. One of the reasons for
using linear measures is that the inherent noise and period-
icity in the observations together with short length of the
available sample sizes make it difficult to use nonlinear
approaches in climate and hydrology [Tziperman et al.,
1994; An and Jin, 2004; Khan et al., 2005].
[4] The goal of this study is to investigate the nonlinear

dependence between ENSO and the annual flow of some of
the largest tropical and subtropical rivers, specifically the
Nile, Amazon, Congo, Paraná and Ganges, through a
measure based on the mutual information (MI). The results
reveal a stronger extrabasinal connection between ENSO
and river flows than the one suggested by linear analysis
using linear regression (LR). This has significant impacts on
scientific understanding and predictability as well as man-
agement of water and agricultural resources in vast, densely
populated regions of the globe.

2. Data and Methodology

2.1. ENSO and River Flow Data

[5] ENSO events are associated with SST anomalies over
the eastern and central equitorial Pacific Ocean. In this
study, the ENSO index is defined in terms of the monthly
SST variations from the long-term mean, averaged over the
regions 2�–6�N, 90�–170�W; 2�N–6�S, 90�–180�W; and
6�–10�S, 110�–150�W of the Pacific Ocean. This dataset
was published as a homogenized monthly series of the mean
SST anomaly for the period 1872–1989 [Wright, 1989].
After 1989, the NINO 3.4 is used as the ENSO index
because its geographical regions (5�N–5�S; 120�–170�W)
are close to regions corresponding to the Wright SST.
[6] The monthly discharge data of the Nile River was

measured at Aswan (lat. 24.1�N, long. 33�E) from 1873 to
1989. This integrated runoff comprises contributions from
three major tributaries, specifically the White Nile, the
Blue Nile, and the Atbara, and represents the majority of
the Nile basin. The seasonal streamflow cycle of the Nile
indicates that the minimum and maximum discharges are
observed in April and September, respectively (Figure S1b
in the auxiliary material).1

[7] The discharge data of the Amazon River was collected
monthly from the Rio Negro stage at Manaus (lat. 3�S,

1Auxiliary material data sets are available at ftp://ftp.agu.org/apend/gl/
2006gl027941. Other auxiliary material files are in the HTML.
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long. 60�W) over the period from 1903 to 1985. The
integrated runoff at the Manaus gauge covers more than
3M km2 of the Andean and western Amazon watershed
[Richey et al., 1989]. The seasonal streamflow cycle of the
Amazon indicates that the minimum and maximum dis-
charges are observed in November and June, respectively
(Figure S1b).
[8] The Congo River discharge data was collected

monthly from the river stage at Kinshasa, Zaire (lat. 4.3�S,
long. 15.3�E) from 1905 to 1985. As the Congo River basin,
covering approximately 3.8M km2, is located around the
equator, it experiences a marked semi-annual rainfall cycle
which is associated with the north/south movement of the
inter tropical convergence zone (ITCZ) across tropical
Africa [Todd and Washington, 2004]. This is evident from
the seasonal cycle of the Congo river indicating two peaks
in May and December (maximum) and the lowest flow in
August (Figure S1b).
[9] The Paraná River discharge data for the period

1904–1997 was collected monthly at Corrientes (lat. 27�S,
long. 59�W) located downstream of the confluence of the
Paraguay and the Paraná rivers. The seasonal cycle of the
Paraná exhibits a single peak in February with a long
recession and low discharge in September (Figure S1b).
[10] The monthly Ganges River discharge data was

recorded over the period from 1934 to 1993 at the Hardinge
Bridge in Bangladesh by the Bangladesh Water Develop-
ment Board. It experiences the flood season from July to
October, during which the average annual flow is 82%
[Whitaker et al., 2001]. The peak flow and low discharge of
the Ganges are observed in August and April, respectively,
as exhibited by the seasonal cycle (Figure S1b).
[11] During the year following the warm episodes of

ENSO, the annual discharges of the Nile, Amazon, Congo
and Ganges Rivers fall below their average annual dis-
charge whereas the annual Paraná discharge is higher than
the average annual discharge (Figure S1a). The runoff
statistics give an idea about the discharge characteristics
of the rivers (Table S1).

2.2. Mutual Information (MI)

[12] MI is a measure of statistical dependence among
random variables which captures the full dependence struc-
ture, both linear and nonlinear. The concept of MI was
originally developed in communication theory and has been
applied to multiple domains over the last few decades
[Fraser and Swinney, 1986; Kraskov et al., 2004]. Consid-
ering two random variables X and Y, the MI, denoted by
I(X; Y), is defined as

I X ;Yð Þ ¼ H Yð Þ � H Y jXð Þ ¼ H Xð Þ þ H Yð Þ � H X ; Yð Þ; ð1Þ

where H(X ) or H(Y ) is the marginal information entropy
which measures the information content in a signal and
H(X, Y ) is the joint information entropy which measures the
information content in a joint system of X and Y. The MI
between two random variables X and Y can also be defined
as

I X ; Yð Þ ¼
Z
Y

Z
X

pXY x; yð Þlog pXY x; yð Þ
pX xð ÞpY yð Þ dx dy; ð2Þ

where pXY (x, y) is the joint probability density function
(pdf) between X and Y, and pX(x) and pY(y) are the marginal
pdfs. The MI values range from 0 (independent) to 1
(completely dependent). For a bivariate normal set (X, Y),
the MI and the linear CC, denoted by r, are related as
I(X; Y) = �0.5 log[1 � r(X, Y)2] [Joe, 1989]. For comparing
linear and nonlinear dependence measures, the MI-based
nonlinear CC, i.e., l, ranging from 0 to 1 is defined from
the above relationship as

l̂ X ;Yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� exp �2Î X ; Yð Þ

� �q
; ð3Þ

where l̂(X, Y) and Î(X; Y) are the estimated nonlinear CC
and MI between X and Y, respectively [Joe, 1989; Granger
and Lin, 1994]. In addition, just as the mean squared
errors (MSE) can be derived from LR, a lower bound of
MI-based MSE, which is a measure of the predictability of
Y based on the information content in X, can be estimated
as

dMSE Yð Þ � 1

2pe
exp 2 Ĥ Yð Þ � Î X ;Yð Þ

� �� �
; ð4Þ

where Ĥ(Y) is the estimated entropy of Y and Î(X; Y) is the
estimated MI between X and Y [Brillinger, 2004].
ANOVA-like interpretations have also been suggested for
MI-based dependence [Brillinger, 2004]. Cellucci et al.
[2005] compared MI-based dependence with traditional
measures of dependence, such as Pearson linear correlation
coefficient, Spearman rank order correlation, and Kendall’s
tau.
[13] The measures for linear (r) and nonlinear (l)

correlation quantify the strength of dependence among
multiple variables (viz., ENSO and streamflow in this
study). While the former quantifies the dependence purely
in terms of the linear information content and the latter
quantifies the complete (linear and nonlinear) information
content, the two measures can be related in principle since
they both capture the information contained in one variable
about the other. The relationship between the two measures
(r and l) has been explained in detail by Brillinger [2004].
In more rigorous terms, the two measures can be compared
quantitatively since they directly relate to the expected
MSEs from predictions (see equation (4) for MSE from
the MI-based dependence). The confidence bounds reflect
the degree of belief in the two measures and hence can be
compared as well. The definition of the nonlinear measure
(l) used here has been utilized by previous researchers [Joe,
1989; Granger and Lin, 1994; Brillinger, 2004] precisely
because l collapses to the linear measure (r) for the
bivariate normal distribution (see equation (3)). We compare
r from LR and l obtained from first estimating the MI after
fitting bivariate normal distribution to the data and then
using equation (3). We test one simulation, i.e., chaotic
(described in section 4.1), and one real data, i.e., dependence
between ENSO and Nile River flow, and observe that l
obtained after fitting bivariate normal distribution is exactly
similar to r for both cases (Figure S2). Finally, we would
like to emphasize that the statements that compare linear and
nonlinear correlation measures, while statistically valid,
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need to be evaluated with care owing to issues pertaining to
statistical estimation like bias-variance tradeoffs.

3. MI Estimation Methods

[14] The estimation of the MI requires the estimation of
the joint and marginal pdfs, which, in turn, are frequently
obtained from histogram and kernel density based estima-
tors. Estimates of MI are consistent and asymptotically
converge to the true or theoretical value when the data sets
are relatively large and error-free. Since observations of
river flows and the ENSO index are short and usually
affected by various errors, it is important to assess various
MI estimation methods for short and noisy data. Recently
developed methodologies have been explored for estimating
the MI, such as kernel density estimators (KDE) [Moon et
al., 1995], k-nearest neighbors (KNN) [Kraskov et al.,
2004], and Edgeworth approximation of differential entropy
(Edgeworth) [Hulle, 2005].

3.1. Kernel Density Estimator (KDE)

[15] For any bivariate data set (X, Y ) of size N, Î(X; Y ) is
estimated as

Î X ; Yð Þ ¼ 1

N

XN
i¼1

log
p̂XY xi; yið Þ
p̂X xið Þp̂Y yið Þ; ð5Þ

where p̂XY(xi, yi) is the estimated joint pdf, and p̂X(xi) and
p̂Y(yi) are the estimated marginal pdfs at (xi, yi).
[16] The multivariate kernel density estimator using a

normal kernel is defined as

p̂X xð Þ ¼ 1

Nhd

XN
i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð ÞdjSj

q exp � x� xið ÞTS�1 x� xið Þ
2h2

 !
; ð6Þ

where N is the number of data points; x and xi are the
d-dimensional vectors; S is the covariance matrix on the
xi; jSj is the determinant of S; and h is the kernel
bandwidth also called the smoothing parameter [Moon et
al., 1995]. In this study, the smoothing parameter is chosen
as the optimal Gaussian bandwidth for a normal kernel
given as h = [4/(d + 2)]1/(d+4) N�1/(d+4). The MI estimates
are obtained by first estimating p̂X, p̂Y, and p̂XY from
equation (6) and then plugging them in equation (5).

3.2. The k Nearest Neighbors (KNN)

[17] The MI between X and Y is estimated as

Î X ; Yð Þ ¼ y kð Þ � 1

k
� 1

N

XN
i¼1

y nx ið Þð Þ þ y ny ið Þ
� �� �

þ y Nð Þ;

ð7Þ

where N and k are the number of data points and nearest
neighbors, respectivley; if �(i)/2 is the distance between
(xi, yi) and its kth neighbor, denoted by (kxi, kyi), and if
�x(i)/2 and �y(i)/2 are given as kxi � kxik and kyi � kyik,
respectively, then nx(i) is the number of points xj such that
kxi � xjk 
 �x(i)/2; ny(i) can be calculated similarly; y(x)
is the digamma function, y(x) = G(x)�1dG(x)/dx, which
satisfies the relation y(x + 1) = y(x) + 1/x, with y(1) =

�C, where C = 0.5772156649 is the Euler-Mascheroni
constant [Kraskov et al., 2004]. This study chooses k as 3
since Kraskov et al. [2004] suggested k > 1 in order to
reduce statistical errors and also indicated to avoid large
values of k which lead to the increase of systematic errors.

3.3. Edgeworth Approximation of Differential Entropy
(Edgeworth)

[18] Using Edgeworth expansion of the density p(x), x =
[x1, .., xd], the differential entropy is defined as

H pð Þ ¼ H fp

� �
� J pð Þ ¼ H fp

� �
� 1

12

Xd
i¼1

ki;i;i
� �2� 1

4

Xd
i;j¼1;i6¼j

ki;i;j
� �2

� 1

72

Xd
i;j;k¼1;i<j<k

ki;j;k
� �2

; ð8Þ

where d is the dimension of x; H(fp) = 0.5 log jSj +
d

2
log 2p +

d

2
, where S is the covariance matrix, is the

d-dimensional entropy of the best normal estimate, i.e., fp,
with the same mean and covariance matrix as p; and k is a
standardized cumulant [Hulle, 2005]. In equation (8), J(p) is
called negentropy, which measures the distance to normal
distribution. The MI is estimated by first estimating Ĥ(X),
Ĥ(Y ), and Ĥ(XY ) from equation (8) and then plugging them
in equation (1).

4. Analysis of Simulations

[19] We evaluate and compare MI estimation methods,
i.e., KDE, KNN, and Edgeworth, using some simulations to
find the best method for the real data analysis. Nonlinear
CCs obtained from these methods are compared with linear
and theoretical CCs using linear, nonlinear, and periodic
functions, as well as the nonlinear Henon map, contaminated
with different levels of artificial noise for small and large
datasets. In this study, 50 and 100 points (comparable to the
sizes of the geophysical data sets used in the study) and
1000 points are considered as short and long time series,
respectively.

4.1. Details of the Simulated Data

[20] Case 1 (Linear): simple linear functions with Gauss-
ian noise (e) are used, such as X � N(0, 1), Y: yi = xi + ei for
i = 1, .., N, where X is independent and identically
distributed (iid) and e � N(0, sn) is iid and independent of
X. Case 2 (Quadratic): simple quadratic functions with
Gaussian noise are used, such as X � N(0, 1), Y: yi = xi

2 + ei
for i = 1, .., N, where X and e have the same meaning
described above. Case 3 (Periodic): the periodical system
with Gaussian noise is also analyzed, such as X, Y: yi =
sin(xi) + ei for i = 1, .., N, where X is uniformly distributed
between �p to p and e � N(0, sn) is iid and independent of
X. Case 4 (Chaotic): the Henon map, which exhibits chaotic
behavior, is HX : Hxi+1

= 1 � aHxi
2 + Hyi, HY : Hyi+1

= bHxi
for

i = 1, .., N, where a = 1.4; b = 0.3; and (Hx0
, Hy0

) = (0.0,
0.0). The Henon map with Gaussian noise is also analyzed,
such as X: xi = Hxi + exi, Y : yi = Hyi

+ eyi for i = 1, .., N,
where ex � N(0, sHX

) and ey � N(0, sHY
) are iid and

independent of HX and HY, respectively, and sHX
and sHY

are
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standard deviations of HX and HY, respectively. The
formulations for computing theoretical values of MI for
cases 1, 2, and 3 are described in section 3.1 of Text S1 of
the auxiliary material.

4.2. Conclusion From Simulations

[21] The simulations indicate that the presence of noise
typically leads to an under-estimation of the true MI
between the underlying nonlinear signals (see Text S1,
section 3). As compared to KNN and Edgeworth, KDE is
found to capture the underlying nonlinear dependence more
consistently between two time series when they are short
and noisy assuming such dependence exists (see Text S1,
section 3). We also compare nonlinear dependence
measures, such as KDE, KNN, and Edgeworth, with a
rank-based dependence measure, i.e., Kendall’s tau. From
Kendall’s tau, we observe a large negative bias in nonlinear
dependence in the simulated data contaminated with noise
(see Text S1, section 4). Thus in this study LR and KDE
approaches have been consistently used to estimate and
compare linear and nonlinear CCs respectively.

5. Real Data Analysis

[22] This study assumes that the seasonal cycle for a
particular year consists of 12 months starting with the
month having the lowest average discharge. It also assumes
that long-term flow variability due to ENSO can be captured
in the annual flow, which, in turn, is defined as the
integrated streamflow of the seasonal cycle. Here eight
quarterly ENSO indices, specifically three quarters just
before the seasonal cycle, four quarters corresponding to
the seasonal cycle, and one quarter just after the seasonal
cycle, are derived from quarterly averages of mean monthly
SST anomalies. The bivariate normal and kernel density
between the quarterly ENSO indices and the annual flow of
the Nile, Amazon, Congo, Paraná, and Ganges rivers are
estimated and plotted (Figures S3–S7). Linear and nonlin-
ear CCs between the ENSO index and the annual flow of
the Nile, Amazon, Congo, Paraná, and Ganges Rivers are
obtained using LR and KDE, respectively (Figure 1). The
bias-corrected CCs and their 90% confidence bounds are
estimated using jackknifing.
[23] The jackknife is used to estimate the bias-corrected

l and r and their standard errors using KDE and LR,
respectively. The technique is described below for l and is
the same for r. In the case of real data analysis, the total
number of observations (N) varies from 60 to 117. If d
observations for jackknifing are left out and

ffiffiffiffi
N

p
< d < N,

the number of jackknife samples, given by
N

d

� 

[Efron

and Tibshirani, 1993], is large. So 100 samples of size
0.8N are used for the analysis. l̂*(.) is the mean of
jackknife replications leaving out d = 0.2N observations.
The bias is given as dbias = l̂*(.)� l̂, where l̂ is the original
nonlinear CC between the annual flow and ENSO
considering all N observations. The bias-corrected estima-
tor, l, is given as l = l̂ � dbias. The lower and upper
bounds of 90% confidence bounds are given by 5% and
95% quantiles of 100 jackknife samples of size 0.8N,
respectively.
[24] The prediction accuracies, in terms of MSEs,

of annual river flows based on ENSO are also es-

timated and compared using LR and KDE approaches
(Tables S2–S6).

5.1. Description of Results

[25] Linear CCs between river flows and some quarters of
the ENSO index, such as, all quarters of the ENSO index
and the Nile flow, quarter 2 to quarter 6 of the ENSO index
and the Amazon flow, quarter 1 to quarter 7 of the ENSO
index and the Congo flow, and all quarters of the ENSO
index and the Ganges flow, are negative. Since nonlinear
CCs obtained from KDE, KNN, and Edgeworth do not have
directionality, the absolute values of linear CCs are consid-
ered and plotted. The MI-based nonlinear dependence
measure, i.e. KDE, generate higher CCs and lower MSEs
as compared to linear dependence measure, i.e. LR, which
shows that KDE captures more extrabasinal connection
between ENSO and river flows in the tropical and subtrop-
ical regions of the world as compared to LR (Tables 1 and
S2–S6). The percentage variation in the annual flow of
rivers associated with ENSO are calculated as the square of
CCs. KDE suggests an increase of around 20–70% in the
extrabasinal connection between ENSO and river flows
over those suggested by LR (Figure 1 and Table 1). In the
case of Nile, 90% confidence bounds of linear and nonlinear
CCs are well separated for 5 quarters including quarter with
the highest nonlinear CC indicating that KDE captures
greater dependence between ENSO and the annual flow
compared to LR (Figure 1a). KDE suggests greater depen-
dence between the Congo flow and ENSO since 90%
confidence bounds of linear and nonlinear CCs are well
separated for all quarters except the first quarter (Figure 1c).
In the case of Amazon, Paraná, and Ganges, 90% confi-
dence bounds of linear and nonlinear CCs overlap for all
those quarters which have higher linear CCs but for other
quarters the bounds are well separated (Figures 1b, 1d, and
1e). This indicates that both KDE and LR capture nothing
more than the linear dependence for some quarters based on
90% confidence bounds. However, there is an increase in
the bias-corrected CCs from KDE as compared to LR for
the Amazon, Paraná, and Ganges Rivers which suggests a
stronger extrabasinal connection between ENSO and the
annual flow of these rivers, however with less than 90%
confidence (Figures 1b, 1d, and 1e). When linear CCs are
close to zero, the large difference between linear and
nonlinear CCs should be interpreted with caution because
of an artifact of equation (3) which scales nonlinear CCs
exponentially with MI (Equation (3) and Figures 1c and 1e).

5.2. Conclusion From the Analysis

[26] The results with the real data reported here suggest
that there exists a nonlinear extrabasinal connection between
ENSO and river flows in the topics and subtropics. This
study also shows an appreciable increase in the variation of
annual river flows linked to ENSO using nonlinear relation-
ship measure as compared to linear measures. Hence, these
results indicate additional predictability in the ENSO-
streamflow extrabasinal connection when MI-based
approaches are used, as compared to linear approaches used
by researchers till date. The additional dependence captured
by the MI-based nonlinear CCs may be useful for developing
more accurate and longer streamflow models. This can, in
turn, help in water resources management (e.g., reservoirs
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Figure 1. Nonlinear and linear CCs with their 90% confidence bounds between ENSO and annual river flows of (a) Nile,
(b) Amazon, (c) Congo, (d) Paraná, and (e) Ganges using KDE and LR approaches, respectively. The bias-corrected
estimates, (l, r), plotted as solid dots are estimated as 2(l̂, r̂) � (l̂*(.), r̂*(.)), where (l̂, r̂) are the original nonlinear and
linear CCs between the annual flow and ENSO, respectively, considering all N observations. (l̂*(.), r̂*(.)) is the mean of
100 jackknife replications of size 0.8N. The 90% confidence bounds are given by 5% and 95% quantiles of 100 jackknife
replications of size 0.8N.

Table 1. Variation in the Annual Flow of Rivers Associated With ENSOa

River Previous Studies Linear CC Nonlinear CC

Nile 25% [SON] [Eltahir, 1996] 28% [ASO] 40% [MJJ]
Amazon 10% [D�JF] [Amarasekera et al., 1997] 11% [A�S�O�] 18% [A�S�O�]
Congo 10% [MAM] [Amarasekera et al., 1997] 7% [F�M�A�] 23% [M�J�J�]
Paraná 19% [D�JF] [Amarasekera et al., 1997] 23% [DJF] 29% [DJF]
Ganges 29% [JJA] [Whitaker et al., 2001] 24% [JAS] 32% [JAS]

aLinear and nonlinear CCs are estimated using LR and KDE, respectively. Months in a quarter are given in brackets. The month preceding the seasonal
cycle is indicated by a negative sign following a month.
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and dams for flood control, power generation, drought
mitigation and preparedness for water supply).

6. Discussion

[27] Streamflow series may reflect monotonic trends
related to anthropogenic factors, which may include diver-
sions, consumptions and flow regulations within the basin,
in addition to possible impacts of climate change. An
estimation of the likely magnitudes, as well as qualitative
assessment of the evidence, of such changes may need to be
performed on a case by case basis for each basin. Just as an
example, three of the co-authors of this paper performed
qualitative investigations for streamflows of two rivers
within the United States [Khan et al., 2005]. Our
investigations demonstrated that thorough studies can be
time-consuming and intensive, hence such efforts are left as
areas of future research. Discussions regarding the specific
datasets utilized in this paper can be found from the data
sources as well as within the previous studies that have
utilized these datasets [Richey et al., 1989; Eltahir, 1996;
Amarasekera et al., 1997; Whitaker et al., 2001]. We would
like to note that accounting for all the known trends, if
possible, may have further impact on the ENSO to
streamflow connection. Thus, it is likely that the ENSO-
streamflow extrabasinal connection is actually even higher
than estimated if such trends were to be accounted for.
Conversely, it is possible that some extremes are highlighted
in the anthropogenic basin flow trends which tend to
overemphasize the ENSO connection. On the other hand, an
argument can perhaps be made that such situations are not
relevant to the point of this paper since the influence of
anthropogenic or other trends will be reflected in both the
linear and nonlinear measures of dependence. However,
while making a priori statements may not be justified, it is
likely that some of the trends will be nonlinear and that the
nonlinear measures may be potentially more susceptible to
the presence of outliers.
[28] Although ENSO has a direct influence on rainfall

anomalies over the tropical and subtropical regions, only a
portion of the variation in the annual flow of rivers located
in these regions is associated with ENSO events. This is
most likely caused by the complex ocean-land-atmosphere
interactions, rainfall-runoff relationships, and anthropogenic
influences, compounded by the fact that the available data
may be noisy, incomplete or corrupted.
[29] In recent decades, economic, population and geo-

political pressures have resulted in significant changes in
land-use patterns that may alter the land-atmosphere-water
cycle in the tropics and subtropics. These changes in the
water cycle can, in turn, impact regional precipitation, water
vapor flux, and surface water flows, causing regional as
well as global shifts in seasonal-to-interannual atmospheric
phenomena. A better understanding and quantification of the
relationship between ENSO and river discharges can help
scientists and policy makers understand and get prepared for
the changes in river discharge patterns, in addition to
attributing such changes to natural or anthropogenic drivers.
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